Coded-Protocols for Implementing Cooperative Diversity

June 30, 2004

Matthew Valenti
Assistant Professor
West Virginia University
Morgantown, WV 26506-6109
mvalenti@wvu.edu

Problem Statement

- Consider the following ad hoc network:

- Questions:
 - How can the message be efficiently routed to the destination?
 - What is the tradeoff between latency and energy efficiency?
 - How to implement error control, routing, and access control?
 - Hybrid ARQ = Both FEC and ARQ are permitted.
 - Joint (cross-layer) solution is emphasized.
Conventional Approach: Multihop

- Multihop picks from among several possible routes:

 ![Multihop Network Diagram]

- **Drawbacks**
 - Routing tables need to be created and maintained.
 - Not robust to changes in topology, interference, or channel.
 - Routing ultimately relies on cascade of point-point links.
 - Spatial (MIMO) diversity not exploited.
 - Wireless is broadcast-oriented, not link-oriented!
 - The network could instead be interpreted as a large array.

Conventional Antenna Arrays

- With a **conventional** array, elements are closely spaced ($\lambda/2$) and connected through high bandwidth cabling.
 - **Microdiversity.**
Distributed Antenna Array

With a **distributed** array, the antennas are widely separated (e.g. different base stations) and connected through a moderate bandwidth backbone.

- **Macrodiversity.**

![Distributed Antenna Array Diagram]

Virtual Antenna Array

With a **virtual** array, the antenna elements are widely spaced (attached to different receivers) but are **not** connected by a backbone.

- Virtual connection achieved by MAC-layer design.
- **Decentralized macrodiversity.**
- Related to the relay channel and cooperative diversity.

![Virtual Antenna Array Diagram]
Related Work

- Several options for exploiting the broadcast nature of radio have been proposed.

 - The relay channel (Cover/El Gamal 1979)
 - Cooperative diversity (Sendonaris/Erkip/Aazhang & Laneman/Wornell 1998)
 - Cooperative coding (Hunter & Nosratinia)
 - Parallel relay channel (Gatspar/Kramer/Gupta 2002)
 - Multihop diversity (Boyer/Falconer/Yanikomeroglu & Gupta/Kumar 2001)

Orthogonal Single-Relay Channel

- Assume block fading.
 - For one block of data, each channel is AWGN with instantaneous SNR γ
 - The SNRs change from block-to-block.
 - The average SNR is Γ.

 - A single channel is in an outage if:
 $$C(\gamma) = \frac{1}{2} \log_2(1 + \gamma) < r$$
 r is code rate

 - The overall relay channel is in an outage if either:
 1. Both source-relay and source-destination link in outage:
 $$\left(C(\gamma_{s,r}) < \frac{r}{\alpha} \right) \cap \left(C(\gamma_{r,d}) < \frac{r}{\alpha} \right)$$
 α is fraction of time the source transmits
 2. Source-relay link not in outage but parallel link from relay and source to destination is in an outage:
 $$\alpha C(\gamma_{r,d}) + (1 - \alpha) C(\gamma_{s,d}) < r$$
Outages

- The outage event region is the range of instantaneous SNRs such that:

\[R_o = \left[\left(C(Y_{s,r}) < \frac{P_r}{\sigma^2} \right) \cap \left(C(Y_{r,d}) < \frac{P_r}{\sigma^2} \right) \right] \cup \left[\left(C(Y_{s,r}) > \frac{P_r}{\sigma^2} \right) \cap \left(\alpha C(Y_{r,d}) + (1-\alpha) C(Y_{s,d}) < \frac{P_r}{\sigma^2} \right) \right] \]

- The outage event probability (OEP) is:

\[
P_o = \iiint_{k_d} f(Y_{s,r}, Y_{r,d}, dY_{s,r}, dY_{r,d}) dY_{s,r} dY_{r,d}
\]

\[
= \frac{1}{\Gamma_{s,r} \Gamma_{r,d}} \iiint_{k_d} \exp \left(\frac{Y_{s,r}}{\Gamma_{s,r}} + \frac{Y_{r,d}}{\Gamma_{r,d}} + \frac{Y_{s,d}}{\Gamma_{s,d}} \right) dY_{s,r} dY_{s,d} dY_{r,d}
\]

- Under the assumption of independent quasi-static Rayleigh fading channels.

Numerical Results

- Consider the following example:
 - The received power \(P_r \) at distance \(d_m \) is related to transmitted power \(P_t \) by

\[
P_r = \left(\frac{c}{4\pi d_m f_c} \right)^n \left(\frac{d_m}{d_s} \right)^n P_t = 10^{-4} d_m^n P_t
\]

 - Where \(f_c = 2.4 \text{ GHz} \), \(d_o = 1 \text{ m} \), and path loss coefficient \(n = 3 \).
 - Define the “transmit” SNR as \(P_t/(WN_o) \)

- We can visualize performance in two dimensions by plotting contours of source/relay transmit SNRs required to achieve desired OEP.

- Assume source & destination separated by 10 m
 - Relay lies on line connecting source & destination.
The Outage Event Probability (OEP)

![Graph showing the outage event probability (OEP) with different configurations of source, relay, and destination distances, and their corresponding average Transmit SNR values.]

Distributed Turbo Coding

- Source & relay each have a recursive encoder.
- If relay interleaves between decoding and re-encoding, then a turbo code has been created.

![Diagram illustrating the distributed turbo coding system with components labeled: Source, Relay, Destination, Interleaver, Turbo Decoder, Source-Relay Channel (RSC #1), and Relay-Destination Channel (RSC #2).]

Performance of Distributed Turbo Coding

frame size = 512 data bits
BPSK modulation

Performance of Distributed Turbo Coding

frame size = 512 data bits
BPSK modulation
Scaling to Large Networks

- The results can be extended to the multiple relay channel.
 - Could use a multiple turbo code.
 - Parallel relays or inter-relay communications.
 - However, scheduling with multiple relays is difficult.
- Another option is to use use generalized hybrid-ARQ.
 - Hybrid-ARQ
 - Encode data into a low-rate R_m code
 - Implemented using rate-compatible puncturing.
 - Break the codeword into M distinct blocks
 - Each block has rate $R = R_m/M$
 - Source begins by sending the first block.
 - If destination does not signal with an ACK, the next block is sent.
 - After mth transmission, effective rate is $R_m = R/m$
 - Generalized hybrid-ARQ
 - The retransmission could be from any relay that decoded the message.
 - In large network, relays form a subset of the network called a cluster.

Info Theory of Hybrid-ARQ

- Throughput of hybrid-ARQ has been studied by Caire and Tuninetti (IT 2001).
 - Let γ_m denote the received SNR during the mth transmission
 - The instantaneous capacity is:
 \[
 C(\gamma_m) = \frac{1}{2} \log_2 (1 + \gamma_m)
 \]
 - The cumulative capacity is:
 \[
 C_m = \begin{cases}
 \sum_m C(\gamma_m) & \text{diversity combining} \\
 \sum_m \gamma_m & \text{code combining}
 \end{cases}
 \]
 - An outage occurs if
 \[
 C_m < R
 \]
HARBINGER

- Source broadcasts first packet, \(m=1 \).
- Relays that can decode are added to the decoding set \(D \).
 - The source is also in \(D \)
- The next packet is sent by a node in \(D \).
 - The choice of which node depends on the protocol.
 - Geographic-Relaying: Pick the node in \(D \) closest to destination.
- The process continues until the destination can decode.
- We term this protocol “HARBINGER”
 - Hybrid ARq-Based INtercluster GEographic Relaying.
- Energy-latency tradeoff can be analyzed by generalizing Caire and Tuninetti’s analysis.

HARBINGER: Initialization

Solid circles are in the decoding set \(D \).
Amount of fill is proportional to the accumulated entropy.
Keep transmitting until Destination is in \(D \).
HARBINGER: First Hop

HARBINGER: Selecting the Relay for the Second Hop
HARBINGER: Second Hop

HARBINGER: Third Hop
HARBINGER: Fourth Hop

HARBINGER: Results

Topology:
Relays on straight line
S-D separated by 10 m

Coding parameters:
Per-block rate R=1
No limit on M
Code Combining

Channel parameters:
\(n = 3 \) path loss exponent
2.4 GHz
\(d_0 = 1 \) m reference dist

Monte Carlo Integration

B. Zhao and M. C. Valenti. “A block-fading perspective on energy efficient random access relay networks”, to appear in JSAC special issue on Wireless Ad Hoc
Discussion

- Advantages.
 - Better energy-latency tradeoff than multihop.
 - Nodes can transmit with significantly lower energy.
 - System exploits momentarily good links to reduce delay.
 - No need to maintain routing tables (reactive).
- Disadvantages.
 - More receivers must listen to each broadcast.
 - Reception consumes energy.
 - Nodes within a cluster must remain quiet.
 - Longer contention period in the MAC protocol.
 - Results are intractable, must resort to simulation.
 - Requires position estimates.

These tradeoffs can be balanced by properly selecting the number of relays in a cluster.

Simplifying Assumptions

- Closed-form analysis is not tractable.
 - Statistically variable channels.
 - Nodes have memory for entire source-destination transaction.
 - Possible changes in topology.
- Analysis is possible under simplifying assumptions:
 - Channels are static (AWGN) for duration of transaction.
 - Nodes flush memory once a new relay is selected.
 - Still maintain memory of ARQ packets from current transmitter.
 - Topology is 2-D Poisson.
GeRaF

Geographic Random Forwarding (GeRaF)
- Node activity follows a sleep schedule.
 - Common strategy for sensor networks.
- Source broadcasts over an AWGN channel.
 - If one node is within range it becomes the designated relay.
 - If multiple nodes, the one closest to destination becomes relay.
 - Otherwise, source tries again later to see if a relay awoke.
 - No ARQ or diversity combining effect.
- This is precisely HARBINGER with the simplifying assumptions and M=1 (no ARQ)

HARBINGER: Simplified Analysis

Topology:
2-D Poisson
S-D separated by 10 m

Coding parameters:
Per-block rate R=1
Code Combining
Normalized power
(Initial TX range is 1 m)

Channel parameters:
n = 3 path loss exponent
2.4 GHz
d_0 = 1 m reference dist

Only requires calculating areas of the geographically advantaged regions

B. Zhao and M. C. Valenti. “Position-based relaying with hybrid-ARQ for efficient ad hoc networking,” submitted to EURASIP issue on Ad Hoc Networks.
Coding for HARBINGER

- To implement HARBINGER, need a code suitable for:
 - Hybrid ARQ: Rate compatible puncturing.
 - Block fading.

- One option is a carefully designed LDPC code.
 - Oftentimes LDPC codes are designed using girth-conditioning techniques.
 - Avoid 4-cycles.
 - Try to maximize the girth of the underlying Tanner graph.
 - For puncturing and for fading, **stopping sets** are more important.
 - **Stopping set**: A set of code symbols which, if all are erased, will not allow the decoder to converge.
 - Want to avoid small stopping sets.
 - Want to avoid all bits in a stopping set in same frame.

Distributed Space-Time Coding

- A source and relay in the decoding set could transmit concurrently using a space time code.

- There are several practical problems:
 - Lack of timing synchronism.
 - Frequency offset.

\[\text{Source} \quad \xrightarrow{\text{Relay}} \quad \text{Destination}\]

---, “Macroscopic space-time coding: Motivation, performance criteria, and a class of orthogonal designs”. CISS 2003
Conclusions

- Wireless is a broadcast-oriented medium
 - Link-oriented protocols do not exploit this.
- Cooperative diversity (orthogonal relaying) can give a better tradeoff between energy and latency.
 - The number of participating relays should be carefully chosen.
- A cross-layer approach can yield significant gains:
 - Error control using hybrid-ARQ
 - CSMA-style medium access control
 - Position-based relaying