Scaling Cooperative Diversity to Large Networks

Matthew C. Valenti and Bin Zhao

Wireless Communication Research Lab
Lane Dept. of Comp. Sci. Elect. Eng.
West Virginia University
Morgantown, WV

This research was funded exclusively by the Office of Naval Research under grant N00014-00-0655, “Advanced Packet Based Communications”.
Cooperative Diversity via Distributed Array (Laneman)

- Spatial diversity through antenna array.

- Cooperative diversity through virtual antenna array.

Wireless relaying
Virtual receiving antenna arrays
Receiver #1
Receiver #2
Geographic Random Forwarding (Zorzi & Rao)

- The GeRaF protocol.
 - Source node broadcasts its message without picking the relaying node a priori.
 - A contention scheme assures that the node closest to the destination acts as relay.
 - Especially suitable for sensor networks with nodes that cycle in and out of sleep states.

R: RTS packet; C: CTS packet;
D: Data packet; CA: Contention arbitration;
T: network coherence time (time that topology is fixed);
Hybrid ARq Based INtra-cluster GEographic Relaying

- **Drawback of GeRaF.**
 - Excessive message delay in low (active node) density networks.

- **The HARBINGER Protocol.**
 - Preserve protocol structure and priority zone-splitting mechanism in GeRaF.
 - Utilize hybrid-ARQ to expand coverage radius to R_M (M is rate constraint).
 - Cross-layer protocol combines cooperative diversity, hybrid-ARQ, and routing.

- **Type II hybrid-ARQ retransmission.**
 - Through puncturing, different fraction of a rate r mother codeword is transmitted per time slot $s_m = \{s_1, s_2, \ldots, s_M\}$ where each time slot is of unit duration.
 - Assuming capacity approaching codes and maximum likelihood detection.
 - The accumulated mutual information at Z_j: $I_j[m] = \sum_{i=1}^{m} \frac{1}{2M} \log_2(1 + \gamma_j[i])$.
 - Once $I_j[m] \geq r$, $Z_j \in D(s_m + 1)$ and Z_j may act as relay.
 - Once a relay forwards the message, all nodes flush their memory of previous transmissions.
Slow HARBINGER: $T > 1$

R: RTS packet;
C: CTS packet;
D: Data packet;
T: Network coherence time;
CA: Contention arbitration;

Slow HARBINGER A maximizes message progress.
Slow HARBINGER B minimizes ARQ packet retransmissions.
Fast HARBINGER: $T = 1$

R: RTS packet; C: CTS packet; A: ACK packet; D: Data packet; CA: Contention arbitration; T: Network coherence time;

Fast HARBINGER during 0~T.

Fast HARBINGER during T~2T.
Figure 1: The message delay in different versions of HARBINGER under rate constraint $M = 2$ and source-destination separation $D = 10$. Transmit power is normalized to $R_1 = 1$ and path-loss coefficient $\mu = 3$.
Figure 2: The energy efficiency of different versions of HARBINGER under rate constraints $M = 2$ and source-destination separation $D = 10$.
Conclusions

- HARBINGER is a cross-layer protocol combining cooperative diversity, hybrid-ARQ, and routing.

- Comparison of HARBINGER and GeRaF.
 - HARBINGER is a generalization of GeRaF.
 - GeRaF is HARBINGER with $M = 1$.
 - HARBINGER has shorter delay than GeRaF.
 - HARBINGER requires more transmit energy.
 - HARBINGER allows low sleep duty cycles.

- Different versions of HARBINGER are developed for different network applications.
 - Slow HARBINGER A maximizes message progress, thus minimizes delay.
 - Slow HARBINGER B minimizes data packet retransmission, thus is more energy efficient than Slow HARBINGER A.
 - Fast HARBINGER synchronizes data packet retransmission with device sleeping cycles, thus also benefiting from time diversity.

- Without memory flushing HARBINGER should have much better performance but requires more complicated analysis.
Publications

